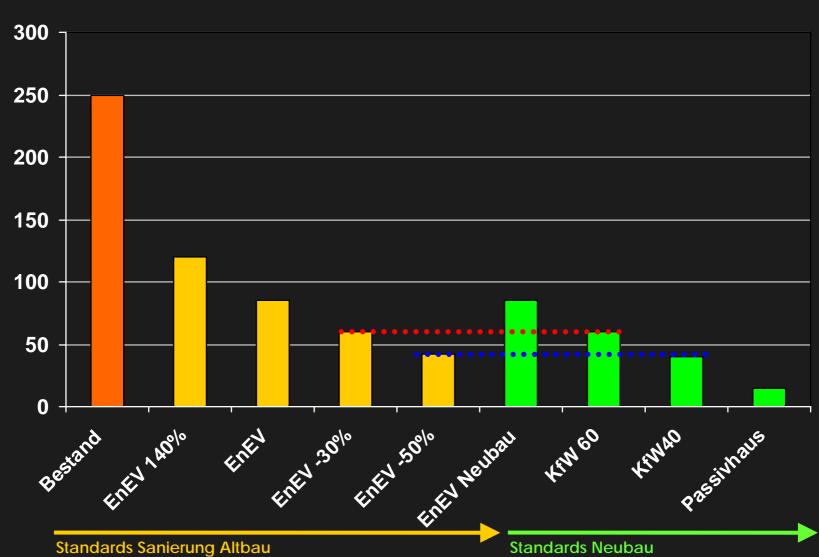
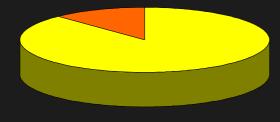
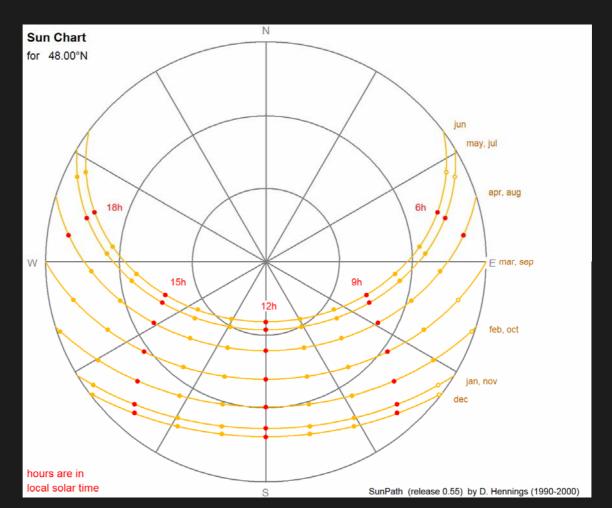

Energiesparen – Projekte aus Städtebau und Hochbau

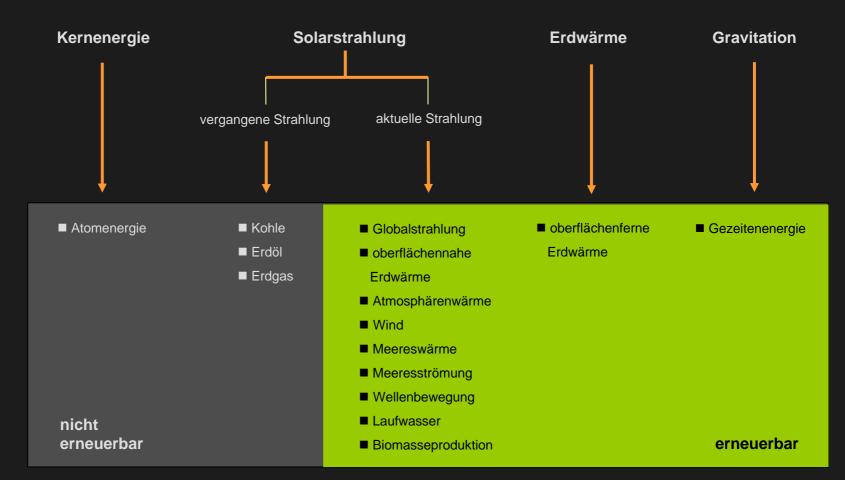

Prof. Georg Sahner BDA E2D

Studiengangsleiter des Bachelor- und Masterstudiengangs Energieeffizientes Planen und Bauen – HS Augsburg Forschungsgruppe Energieeffizienz – HS Augsburg

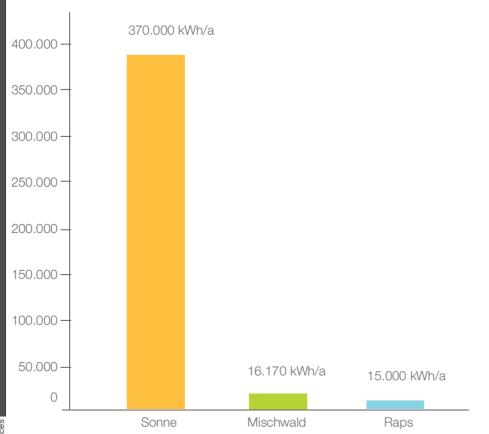
gas-sahner Planungsgruppe Stuttgart-Augsburg

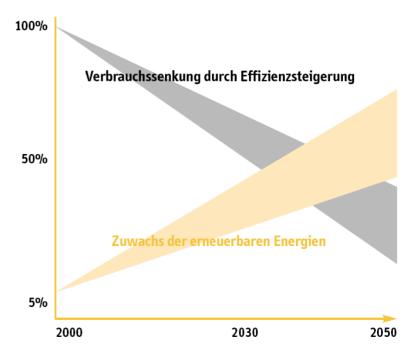

Globalstrahlung auf hamburg: 689 GWh/a


= 100 %

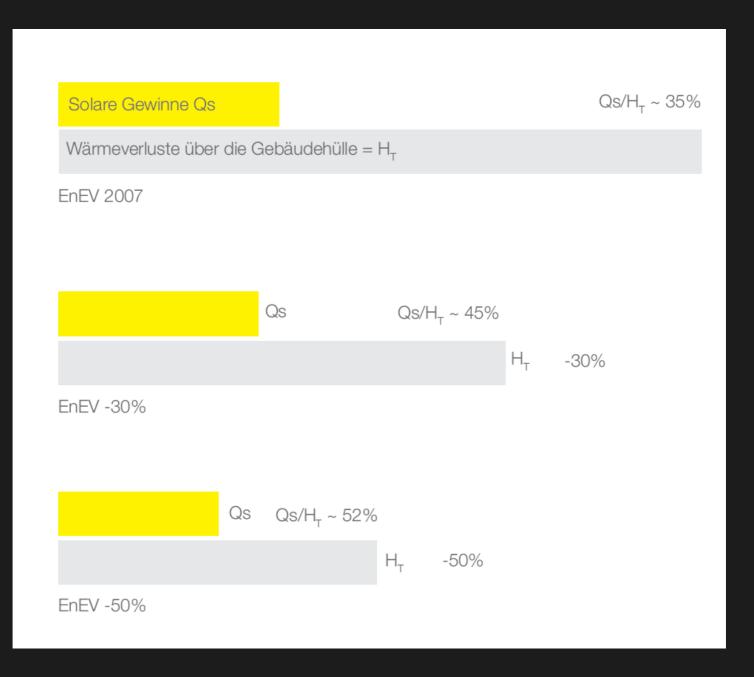

Energiebedarf Hamburgs 83 GWh/a

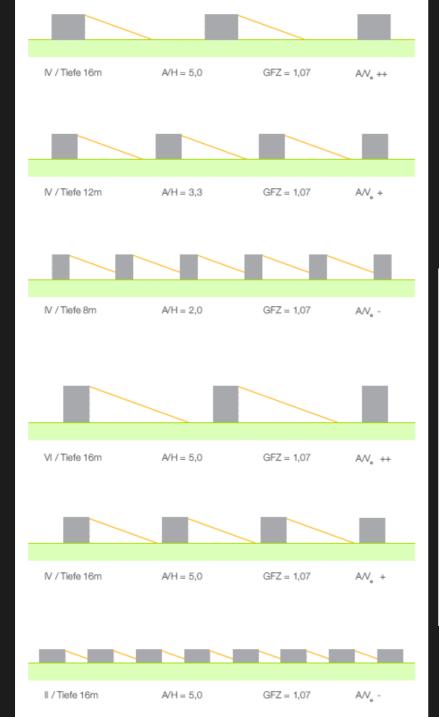
= 12 % der einfallenden





Quelle: Prof. Hegger





Der Ausbau der Erneuerbaren Energien und die Verbesserung der Effizienz müssen sich "entgegenkommen".

chschule Isburg University of

Solarstrahlung

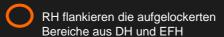
Unterbrechung der Raumkante

Starke Verdichtung und Verschattung durch Reihenhäuser

Abstandsfläche zu gering

Analyse I Bebauungsplan IST I Definition der Typologien

Anstieg der Gebäudehöhen und Dichte nach Süden



IST Ausgangsvariante	SOLL Form	SOLL Dammebene	SOLL Energiestandard KfW 60
Aktion	Veränderung der Form	Veränderung der Dämmebene	Verbesserung Energiestandard auf H _⊤ ' _{soll} EnEV -30%
		Minimierung der Verluste bei beheiztem Keller	
	Verbesserung Q _h	Verbesserung H _T s₀∥ EnEV ca20%	Verbesserung Q _h
Reaktion	Minimierung der Verschattung	Verbesserung Q _h	
SOLL Energiestandard KfW 60 U _{wb} = 0	SOLL Energiestandard KfW 40	SOLL Energiestandard KfW 40 U _{wB} = 0	Passivhausstandard
Verbesserung Energiestandard auf H _T s₀⊪ EnEV -30%	Verbesserung Energiestandard auf H _T 's₀⊪ EnEV -45%	Verbesserung Energiestandard auf H _T 's₀⊪ EnEV -45%	Verbesserung Energiestandard nach H _T 's₀⊪ PHPP
Wärmebrückenfreiheit U _{wB} = 0		Warmebrückenfreiheit U _{wB} = 0	
Verbesserung Q _h	Verbesserung Q _h	Verbesserung Q _h	Verbesserung Q _b

Schaffung klarer räumlicher Kanten

Solarstrahlung, Schaffung lichtdurchfluteter Innen- und Außenräume

Die hohen Gebäude drehen sich nach O/W

Optimierung I Bebauungsplan

chule vurg University of Applied Sciences

Verbesserungen der Typologien um 5 – 8%

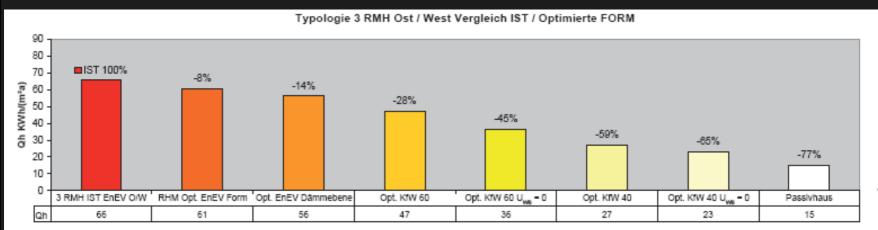


Abb. 14 Jahresheizwärmebedarf bezogen auf die Optimierung der Form, der Wärmedämmebene und der Energiestandards.

ANMERKUNG: Sockelgeschoss auf EFH + 0.5 m OK Gelände ist Grundlage. Bei Fehlen dieser Festsetztung sind bei Korrektur die Gewinnerträge um 3-4% höher.

G.A.S., Stuttgart 2007

Legende

IST Zustand nach EnEV H_T' SOLL SOLL neue Form EnEV H_T' SOLL SOLL neue Dämmebene entspricht ca. EnEV H_T' SOLL -20% SOLL KfW 60 Standard EnEV H_T' SOLL -30% SOLL KfW 60 Standard Minimierung der Wärmebrücken $U_{WB}=0$ SOLL KfW 40 Standard H_{r} ' SOLL -45% SOLL KfW 40 Standard Minimierung der Wärmebrücken $U_{WB}=0$ SOLL Passivhausstandard H_{r} nach PHPP

Optimierung der Verschattungssituation I Gegenüberstellung

Verschattung IST 10:30

Verschattung IST 12:15

Verschattung IST 13:30

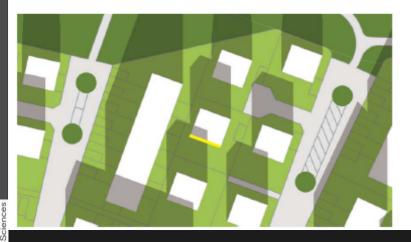
Verschattung IST 14:30

Sehr starke Verschattung der Gebäude hinter dem Reihenhausriegel. Viele Gebäude erfüllen nicht die Mindestanforderung an die Besonnung eines Wohnhauses

Verschattung SOLL 11:30

Verschattung SOLL 12:15

Verschattung SOLL 13:30


Verschattung SOLL 14:30

Durch Öffnung der südlichen Kante, wird die Besonnung der Einfamilienhäuser deutlich verbessert.

Optimierung der Verschattungssituation I Gegenüberstellung

Abb. 33 Verschattung IST 12:15 / 21. Dezember Komburg-Nord, Nürnberg, 2007

Mögliche Verschattung im IST Bestand auf der Südfassade einer 1 + D Typologie mit davor liegender 3-geschossigen Reihenhauszeile.

Zeit	Dez.	Jan.	Feb.	März
10:30	100%	100%	0%	0%
11:30	100%	100%	0%	0%
12:15	100%	100%	0%	0%
13:30	100%	100%	21%	0%
14:30	87%	89%	40%	0%

Fazit: Totale Verschattung in den Monaten Dezember und Januar

Mögliche Verschattung im SOLL Bestand auf die Südfassade.

Zeit	Dez.	Jan.	Feb.	März
10:30	2%	0%	0%	0%
11:30	2%	0%	0%	0%
12:15	6%	0%	0%	0%
13:30	20%	5%	0%	0%
14:30	27%	15%	0%	0%

Optimierung der Verschattungssituation I Gegenüberstellung

Abb. 37 Verschattung IST G.A.S., Stuttgart, 2007

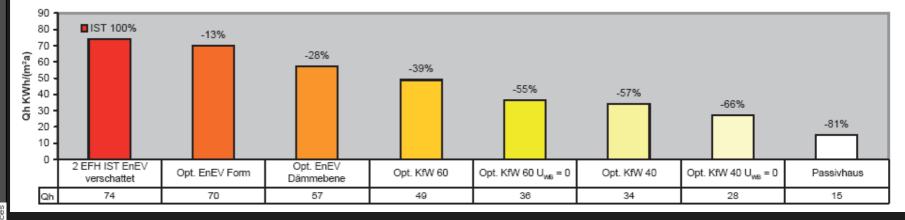

Typologie 2 EFH 12:15 / 21. Dezember

Abb. 38 Verschattung SOLL G.A.S., Stuttgart, 2007

Typologie 2 EFH 12:15 / 21. Dezember

Typologie 2 EFH Vergleich IST / Optimierte FORM + Einfluss Verschattung IST

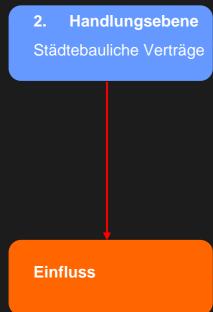
Grundlagen I Handlungsebenen

1. Handlungsebene
Bauleitplanung

Überbaubare Grundstücksflächen (BauNVO § 23)

Höhe baulicher Anlagen (BauGB § 18) Bauweise

(BauNVO § 22)


Stellung baulicher Anlagen (BauGB § 9 (1)) Verkehrsflächen, Flächen ruhender Verkehr (BauGB §9(1)) Flächen für das Anpflanzen von Bäumen (BauGB §9(1))

Einfluss

Reduzierung der Verschattung

Verbesserung der Kompaktheit

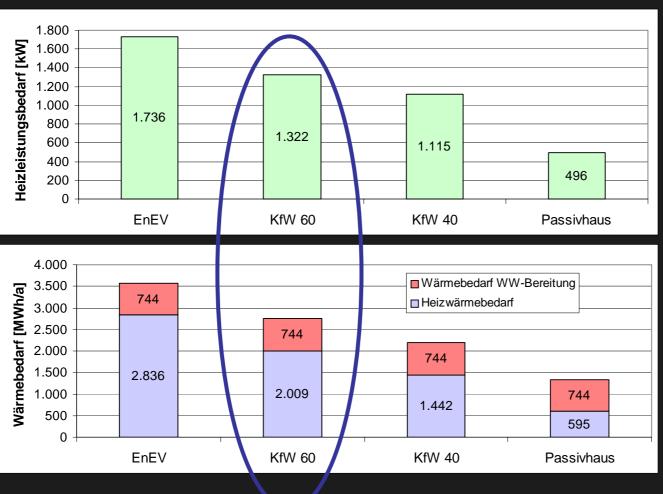
Orientierung der Gebäude

Städtebaulicher Vertrag (BauGB § 11) Private Kaufverträge für kommunales Bauland BGB Einführen eines Punktekataloges ?

Festgesetzter Energiestandard

Emissionswerte der

Maximaler Wärmedurchgangskoef


-fizient einzelner

Definition der Systemgrenze

Wärmebrückenfreie Konstruktion

Nachweise und Berechnungsverfahren können vereinbart werden

Basisdaten Bedarf

Heizleistung: 1.740 ... 500 kW

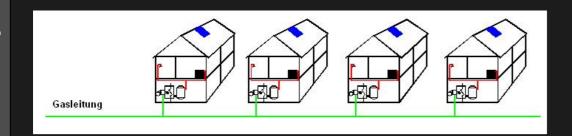
1.320 kW

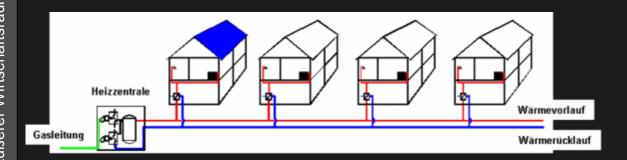
Wärme (Hzg+WW): 3.580 ... 1.340 MWh/a 2.750 MWh/a

KfW 60: Basis für Untersuchung

= 6 € schule burg University of Applied Science

Auswahl von Versorgungsvarianten


Kriterien:


- Geschwindigkeit der Aufsiedlung
- mögliche Betreiberformen (abhängig von Größe der Versorgungseinheit)
- Einsetzbarkeit von Technologien

Hauszeile Baufeld Bauabschnitt Gesamtgebier 35-70 kW 100 – 250 kW 400 – 500 kW 1.320 kW

= 6 € chule urg University of Applied Sciences

Vergleich von Versorgungsvarianten

dezentral

A1: Gas

A2: Gas+Solaranlage

A3: Pellets

A4: Pellets+Solaranlage

A5: Erdsonden-WP

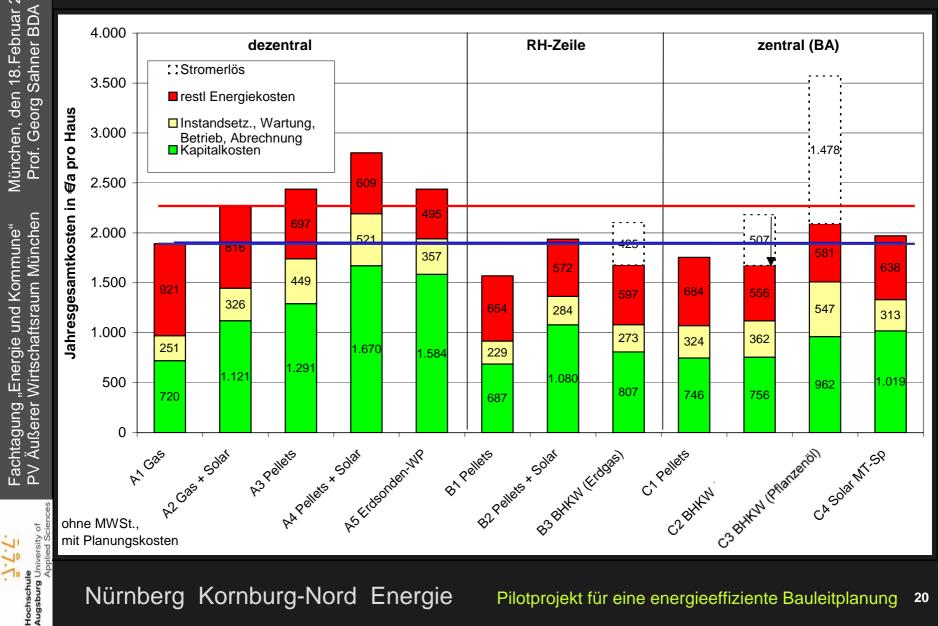
zentral / RH-Zeile

B1: Pellets

B2: Pellets+Solaranlage

B3: Gas-BHKW

zentral / Bauabschnitt


C1: Pellets

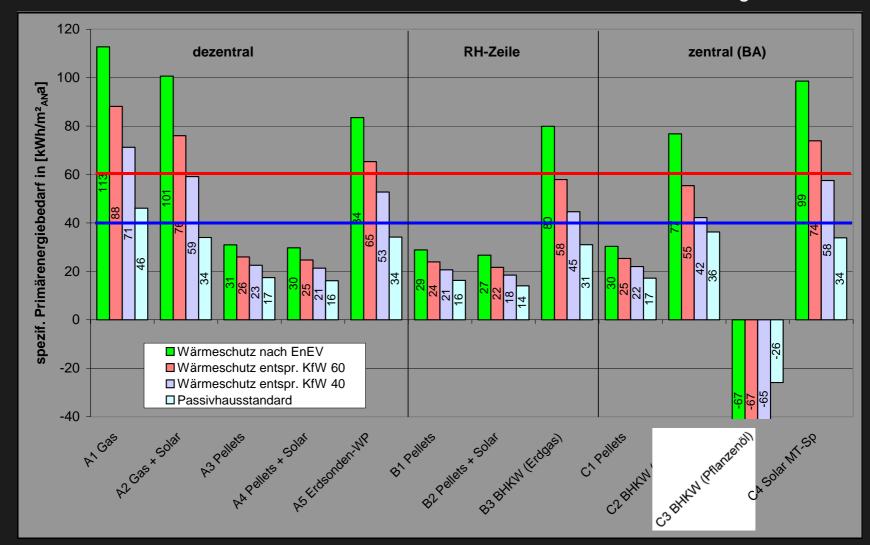
C2: Gas-BHKW

C3: Pflanzenöl-BHKW

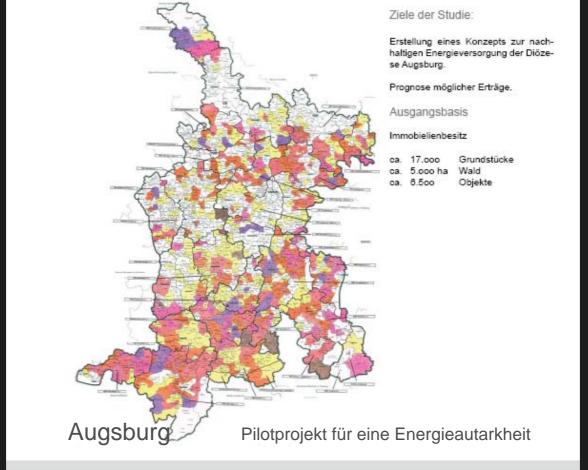
C4: Solaranlage mit Mehrtagesspeicher

Jahresgesamtkosten

Investitionskosten

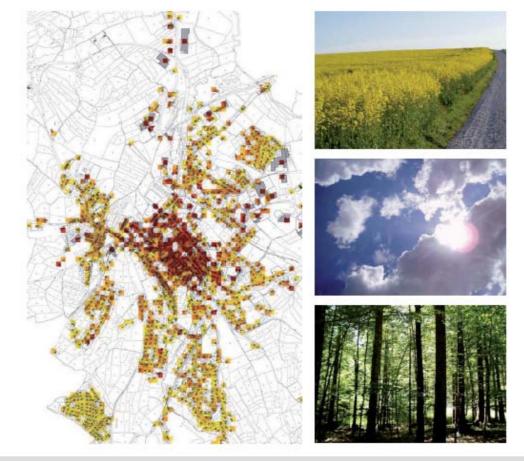


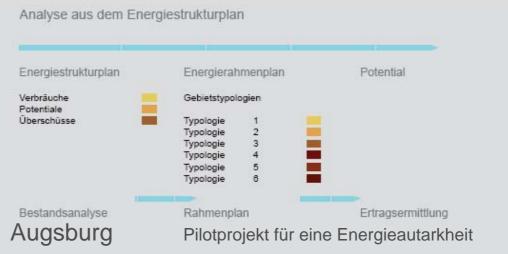
25 **RH-Zeile** dezentral zentral (BA) ■ Wärmeschutz nach EnEV 20 ■ Wärmeschutz entspr. KfW 60 ■ Wärmeschutz entspr. KfW 40 Passivhausstandard Investitionen [T€Geb.] 15 5 Kosten pro EFH ohne MWSt., mit Planung

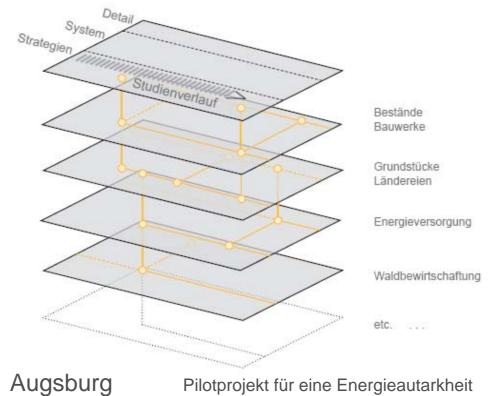

= 6 6 Hochschule Augsburg University of Applied Sciences

Primärenergie

für alle Energiestandards






= 5 5 5 charter the charter of the c

Augsburg

Pilotprojekt für eine Energieautarkheit

Übersicht einer möglichen Projektstruktur

Möglichkeiten der Energiegewinnung in Mischgebie-

Typologie

Typologie

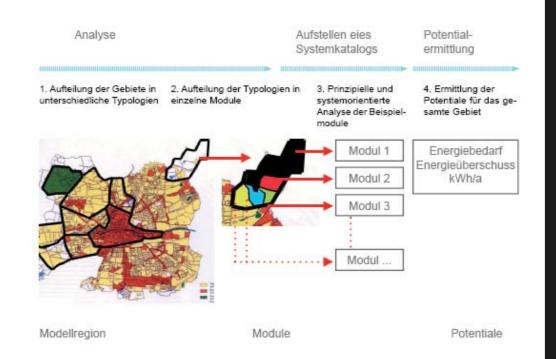
Territorientypologien

Augsburg

Pilotprojekt für eine Energieautarkheit

Potentialermittlung aus Gewässer + Wald + Landwirtschaft + Infrastuktur und Industrie

Siedlungsfläche aus: Oswald - Netzstadt



Jahresheizwärmebedarf in den unterschiedlichen Flächen

Energieverbräuche und Verkehrswege – Verteilerpotentiale aus: Oswald - Netzstadt

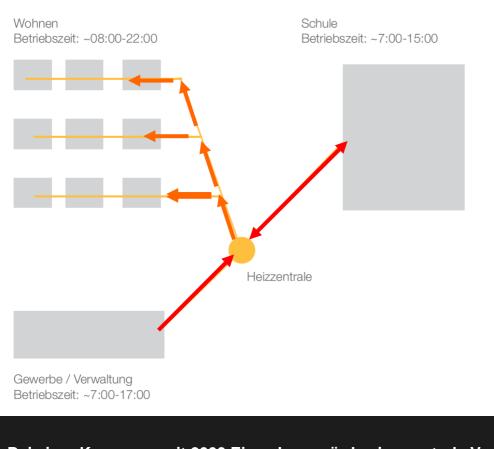
Augsburg Pilotprojekt für eine Energieautarkheit

Augsburg

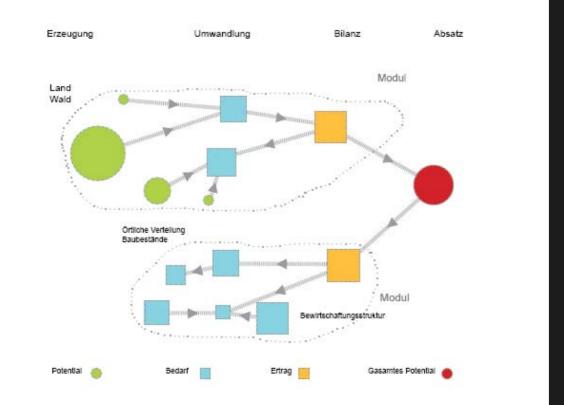
Pilotprojekt für eine Energieautarkheit

Konzeptentwicklung in konkreten Modulen

in der Stadt



Gemeinde



Bei einer Kommune mit 2000 Einwohner würde eine zentrale Versorgung mit erneuerbaren Energien, die vorort erzeugt und eingesetzt werden sich wirtschaftlich folgendes Bild ergeben:

- 1. Die Ausgaben für die Heizwärme der privaten und öffentlichen Einrichtungen belaufen sich auf ca. 2,8 Mio €/a. Diese würden jedes Jahr in einer Firma vorort als Umsatz/Wertschöpfung verbleiben. KEINE Ausgaben, die unwiederbringlich abfliesen!
- 2. Die Investitionskosten für den Energieerzeuger und das Netz werden vorort für die Bauindustrie ausgegeben und nicht an eine Bohrinsel im Atlantik!

Augsburg

Pilotprojekt für eine Energieautarkheit

Mögliche Modulstrukturen, Dynamik im Prozess

Beispiel 1: Einfamilienhaus Energetische Sanierung und Erweiterung eines Einfamilienhauses

Einfamilienhaus vor der Sanierung

Einfamilienhaus nach der Sanierung

Beispiel 1: Einfamilienhaus

Energetische Sanierung und Erweiterung eines Einfamilienhauses

Kosten und Energieeinsparung

Haussanierung Sanierung Passivhau Region: Augsburg/By Scheune mit Altbau Region: Daten: Sirados Region: Augsburg/By Leinheim, WF 205 m ² WF ca. 175 m ² WF ca. 14	/By
Kosten in € und Brutto Kosten in € und Brutto Kosten in	€ und Brutto
EnEV 2007 - Standard EnEV 2007 - 50% Passivhau	ıs
Boden 3.800 Summe 72.740 2	39.550 6.600 20.260 27.000
Heizung 6.900 6.400 Lüftung / 27.460	/ 20.890
Energetisch	nicht einkalkuliert 14.300
Einsparung -5.290 €/a -6.440 €/a	/ €/a 800 €/a / €/a
CO ₂ - Einsparung ca. 6.070 Kg/a ca. 7.390 Kg/a	/ Kg/a 33

Beispiel 1: Einfamilienhaus

Energetische Sanierung und Erweiterung eines Einfamilienhauses

Co₂ – Sanierungsprogramm

Basis etwa 25 Milliarden Euro

		6.400 27.460	/ 20.890
Sonstige Kosten Energetisch	nicht berücksichtigt	nicht berücksichtigt	Abbruch nicht einkalkuliert
bedingte Kosten		106.600	114.300
Vor der Sanierung		6.920 €/a	/ € /a
Nach der Sanierung		480 €/a -6.440 €/a	300 €/a
Einsparung		-0.440 E/a	/ € /a
CO2 - Einsparung		ca. 7.390 Kg/a	/ Kg/a

Beispiel 1: Einfamilienhaus

Energetische Sanierung und Erweiterung eines Einfamilienhauses

Fazit Einfamilienhaus

Die Amortisation der Kosten für die energetische Sanierung des Einfamilienhauses ist weitaus besser als die der Mehrfamilienhäuser oder Schulen und liegt je nach Finanzierung deutlich unter 10 Jahren.

Das hängt am schlechten A/V – Verhältnis (Hüllfläche/ beheiztes Volumen) und den vielen Oberflächen (Transmissionswärmeverluste) der Gebäude.

Die Effizienz der Einzelmaßnahmen ist ökonomisch außerordentlich hoch: 1,80 – 4,30 Cent/kWh äquivalenter Energiepreis.

Bei einer Sanierung von 300 WE in EnEV -30% (KfW CO2-Förderung) verbleiben im Ort

- 1. Ein Wirtschaftspotential von 15 Mio € für die Bauwirtschaft und
- 2. Eine Kaufkraftsteigerung durch Energieeinsparung von 1 Mio €/pro Jahr

Vorher **Nachher** **Nachher**

Wohnhaus in Bayern

Beispiel 2: Schule

Neubau und Sanierung einer Gesamt- und Grundschule

Vorstellung des Projektes ÖPP – Projekt: Schulen im Landkreis Kassel

Kernsanierung am Beispiel der Theodor-Heuss-Schule einer Gesamt- und Grundschule im Baunatal in Altenbauna. Fertigstellung: November 2008

Kennwerte: Baujahr: ca.1960

Moderniesierung:	2007/08
BGF Gesamtschule:	9.953 m²
BGF Grundschule:	1.739 m²
BRI Gesamtschule:	42.289 m³
BRI Grundschule:	7.095 m³
NGF Gesamtschule:	7.147 m²
NGF Grundschule:	1.178 m²

Beispiel 2: Schule

Neubau und Sanierung einer Gesamt- und Grundschule

Vorstellung des Projektes ÖPP – Projekt: Schulen im Landkreis Kassel

Primärenergiebedarf QP

vor der Sanierung 131 kWh/m²a nach der Sanierung 84 kWh/m²a

Neubau nach EnEV

unter EnEV Neubau ca.: 10 %

Spez. Energieverbrauch Heizung

vor der Sanierung 110 kWh/m²a nach der Sanierung 70 kWh/m²a

Strom

vor der Sanierung 21 kWh/m²a nach der Sanierung 14 kWh/m²a

chule urg University of

Beispiel 2: Schule

Neubau und Sanierung einer Gesamt- und Grundschule

Kosten der Sanierung		Energiekosten Vor der	Nach der	Einsparung
	Kosten Brutto in €	Sanierung Brutto in €	Sanierung Brutto in €	pro Jahr Brutto in €
A. Energetische Sanierung 1 Fassade 2 Dach 3 Heizung 4 Lüftung	2.262.000 699.000 475.000 564.000	99.400	59.300	- 40.100
Zwischensumme 5 Starkstrom	4.000.000 1.099.000	45.800	24.000	- 21.800
Summe	5.099.000			
B. Sonstige Kosten	5.348.000			
Gesamtinvestition nur Baukosten	10.447.000			

Beispiel 2: Schule

Neubau und Sanierung einer Gesamt- und Grundschule

Fazit Schulen

- 1. Bei einem Investitionsvolumen von € 5,1 Mio. energetisch bedingter Bauteilkosten kann bei einer EnEV Sanierung nur eine jährliche Einsparung von ca. T € 62 erreicht werden. Folgerung: es sollte unbedingt ein besserer Standard EnEV -50% realisiert werden, das Verhältnis von Kosten und Einsparung wesentlich besser ist. Bei einer Mehrinvestition in energetische Maßnahmen um ca. 3-4% der Baukosten, wird sich die Einsparung auf ca. T € 102 erhöhen.
- 2. Die Schulen müssen sowieso saniert werden, da sie nicht mehr gebrauchstauglich sind. Die Sanierungskosten, die entstehen, sind nur geringfügig kleiner als bei einer EnEV – Sanierung. Daher sind die energetisch bedingten Mehrkosten in einem sehr viel besseren Verhältnis zu der Energieeinsparung. Folgerung: Hier würde die Amortisation bei EnEV -50% deutlich unter 10 Jahren liegen.

Vorher Nachher Klassenraum Flur Hof

Prof. Georg Sahner BDA E2D

Energetische Beratung für energieeffiziente Gebäudetypen und Infrastruktureinrichtungen (Sanierung – Neubau - Passivhaus)

Energieeffiziente Stadtplanung

Nachhaltigkeitsanalysen DGNB – LEED – Green Building

georg.sahner@hs-augsburg.de